Hiroshi Ito, Reinhold Schwalm
JES
Many biological processes are regulated by molecular devices that respond in an ultrasensitive fashion to upstream signals. An important question is whether such ultrasensitivity improves or limits its ability to read out the (noisy) input stimuli. Here, we develop a simple model to study the statistical properties of ultrasensitive signaling systems. We demonstrate that the output sensory noise is always bounded, in contrast to earlier theories using the small noise approximation, which tends to overestimate the impact of noise in ultrasensitive pathways. Our analysis also shows that the apparent sensitivity of the system is ultimately constrained by the input signal-to-noise ratio. Thus, ultrasensitivity can improve the precision of biochemical sensing only to a finite extent. This corresponds to a new limit for ultrasensitive signaling systems, which is strictly tighter than the Berg-Purcell limit.
Hiroshi Ito, Reinhold Schwalm
JES
Revanth Kodoru, Atanu Saha, et al.
arXiv
Frank R. Libsch, Takatoshi Tsujimura
Active Matrix Liquid Crystal Displays Technology and Applications 1997
Peter J. Price
Surface Science