Kigook Song, Robert D. Miller, et al.
Macromolecules
A Monte Carlo simulation is performed of a Heisenberg model with nearest-neighbor antiferromagnetic interaction. It is carried out on a fcc lattice of size n×n×n unit cells, where n=4,6, and 8 (4n3 spins), with a fraction (x) of the sites occupied by N spins. This model which is random for x<1, on a frustrated lattice, is related to nonconducting spinglasses, such as Cd1-xMnxTe. For x=0.5 and 1, we calculated the following quantities: (i) the specific heat C, (ii) q (t)=N-1iSi(0)Si(t), and (iii) the relaxation time () associated with q (t). For x=1, a singularity in C versus the temperature seems to develop at T0.4JkB, which becomes sharper as N becomes larger, and seems to diverge as T0.4JkB also. Furthermore, additional results for systems of 8×8×n cells (256n spins) for n=2,4, and 8, show that the peak in C becomes rounded as n decreases. For x=0.5, C seems to be smooth in T and independent of N, and T-3 which indicates that there is no transition for T 0. Thus this model seems to lack some essential ingredient to describe the paramagnetic to spin-glass transition seen experimentally in systems such as Cd1-xMnxTe. © 1983 The American Physical Society.
Kigook Song, Robert D. Miller, et al.
Macromolecules
Eloisa Bentivegna
Big Data 2022
Gregory Czap, Kyungju Noh, et al.
APS Global Physics Summit 2025
Frank Stem
C R C Critical Reviews in Solid State Sciences