Cristiano Malossi  Cristiano Malossi photo         

contact information

Research Staff Member, Manager AI Automation
Zurich Research Laboratory, Zurich, Switzerland
  +41dash44dash724dash86dash16

links

Professional Associations

Professional Associations:  ACM  |  Society for Industrial and Applied Mathematics

more information

More information:  Linkedin  |  ResearchGate  |  Google Scholar  |  Twitter

profile


Cristiano Malossi is Manager of the AI Automation group at the IBM Research laboratory in Zurich. The group focuses on creating solutions for scalable AI model development and deployment on Cloud and High-Performance on-prem systems. In 2018 Cristiano’s team released on the IBM Cloud the first IBM engine for automation of neural network synthesis (NeuNetS). In 2019, this work is being further extended and refined into a complete framework for accelerating the full data science experience.

Since 2017 Cristiano is coordinator of the FET-H2020 Open transPREcision COMPuting (OPRECOMP) project, with focus on low-power/low-energy computing paradigms based on approximation and transprecision. Cristiano is a recipient of the 2016 IPDPS Best Paper Award and the 2015 ACM Gordon Bell Prize. Since 2015 he is also member of ACM and SIAM societies, and he is part of Technical Program committee of top conferences, including SC, ISC, IPDPS, and DATE.

Before IBM, Cristiano graduated from the Swiss Federal Institute of Technology in Lausanne (EPFL) in Lausanne with a PhD in applied mathematics. In 2013, his thesis on parallel algorithms and mathematical methods for the numerical simulation of cardiovascular problems granted him the IBM Research Prize for Scientific Computing. Cristiano has also a B.Sc. in Aerospace Engineering and a M.Sc. in Aeronautical Engineering from the Politecnico di Milano (Italy).

Cristiano main research interests include: AI, AI Automation, Deep Learning & Machine Learning, High Performance Computing, Transprecision & Energy-Aware Computing, Numerical Analysis, Computational Fluid Dynamics, Aircraft Design, Cardiovascular Simulations, and Computational Geology.

Scientific Awards:
2016 - IEEE/ACM IPDPS Best Paper Award
2015 - IBM Pat Goldberg Memorial Best Paper Award
2015 - ACM Gordon Bell Prize

2013 - IBM Research Prize for Computational Science (for the PhD thesis)

Research in the News:

  • Artificial intelligence, drones and sensors set to save our crumbling infrastructure (Medium.com - December 2019)
  • Mit KI und Drohnen auf der Suche nach Brückenschäden (Computerworld - December 2019)
  • AI for AI: in the middle of the future (Migros Magazin Cover, 3-millions printed copies - May 2019)
  • Radical computing rethink to save time and energy (EC Research and Innovation Success Stories - February 2019)
  • NeuNetS: Automating Neural Network Model Synthesis for Broader Adoption of AI (IBM Blog - December 2018)
  • TAPAS: Frugally Predicting the Accuracy of a Neural Network Prior to Training (IBM Blog - December 2018)
  • Restoring Balance in Machine Learning Datasets (IBM Blog - October 2018)
  • Come funzionano le reti neurali (MaddMaths! - October 2017)
  • The future belongs to cognitive systems (SIX Connect - May 2017)
  • Gordon Bell Prize Winners Simulate Earth's Mantle (IBM Systems Magazine - November 2016)
  • Data Centric Systems, la frontiera del supercalcolo (01net. - 6 May 2016)
  • Trade talk: Serial solver (Nature Careers Q&A - 14 April 2016)
  • Finding job satisfaction in high performance computing (Naturejobs blog - 13 April 2016)
  • SC15 Gordon Bell Prize Winners (PR Newswire; IBM Blog; HPCWire - 20 November 2015)
  • Meet an IBM Researcher (IBM Blog - 6 November 2015)
  • IBM Research Prize for Computational Science (EPFL News - 10 October 2013)

 

Selected publications:

 

Code and tools:

  • NeuNetS: Neural Network Synthesizer (IBM Cloud)
  • OPRECOMP: EU Project on Transprecision Computing (GitHub)
  • BAGAN: Keras implementation of BAlancing GAN (IBM GitHub)
  • IBM Optimized High Performance Conjugate Gradient (IBM GitHub)
  • LifeV: Library for the numerical solution of PDEs with FEM (BitBucket)

 

Videos: