Center for Computational Health - overview


Research at the Interface of Data Science and Health

We pursue research in the application of data science to healthcare across the entire continuum from the health of individuals, to that of populations, to the healthcare system itself.

Healthcare is in the midst of dramatic changes on many levels, driven in no small part by the expanding role of data in achieving a deeper understanding of disease, behavior and the interaction of complex systems. New types of data, such as genomic and sensor data, combined with the increasing electronic availability of traditional health data, are having a major impact on conceptual models of how disease is diagnosed and treated.

The Center for Computational Health at IBM Research consists of a multi-disciplinary team of researchers with expertise in machine learning, data mining, visual analytics, biomedical & medical informatics, statistics, behavioral and decision sciences, and medicine. We work on developing cutting-edge methodologies to derive insights from diverse sources of health data, to support use cases in personalized care delivery and management, real world evidence, health behavior modeling, cognitive health decision support, and translational informatics.

Program Director: Jianying Hu

Team Locations:

IBM T.J. Watson Research Center, Yorktown Heights, New York

IBM Research Cambridge, Cambridge, Massachusetts




Research Areas

 Patient Similarity Analytics

Incorporating diverse patient attributes to develop similarity analytics by applying advanced machine learning methods to identify precision cohorts, combined with modeling methodologies for personalized predictive models capable of identifying patient level rankings of risk factors, leading to more targeted and actionable insights.

Predictive Modeling

Advanced machine learning approaches to address challenges in developing effective and efficient predictive models from observational healthcare data in different use cases. Examples include matrix based methods to address sparsity, feature engineering (i.e., temporal pattern mining, factor analysis), feature selection, scalable predictive modeling platform, personalized predictive modeling leveraging precision cohorts, and multi-task learning for comprehensive risk assessment. 

Disease Progression Modeling

Understanding disease onset, characteristics of disease stages, rate of progression from asymptomatic to symptomatic disease, from earlier to more severe stages, and factors that influence disease progression pathways.   

Translational Informatics

Drug Similarity Analytics combined with advanced machine learning methods such as joint matrix factorization can help pharmaceutical researchers quickly identify drugs that have similar characteristics to target drugs, supporting three distinct, but equally important use-cases: Drug Safety, Drug Repositioning and Personalized Medicine.  

Visual Analytics and Cognitive Decision Support

Innovative visual analytics platform and user interfaces that accelerate the process of exploring and mining data to derive new insights that can be translated into more effective therapeutics and processes.

Contextual & Behavioral Modeling

Combining real-time data from wearable devices, self-reported activity and clinical data, allows us to model behavior for both prediction and personalized wellness and fitness strategies customized to an individual’s unique needs.


Recent News and Posts

11/17 - New York Academy of Sciences Highlights the work of CCH Researcher Subhro Das:
https://www.nyas.org/magazines/imagining-the-next-100-years/i-imagine-how-technology-will-shape-scientific-research-in-the-next-century/

10/25/17 - IBM Researchers publish article in PLOS ONE about MELD-Plus - A generalizable risk score for cirrhosis:
https://www.ibm.com/blogs/research/2017/10/machine-learning-meld/

4/7/17 - IBM grantedU.S. Patent 9,536,194: Method and system for exploring the associations between drug side-effects and therapeutic indications.IBM press release:http://www-03.ibm.com/press/us/en/pressrelease/52017.wss
 Blog Post:  https://www.ibm.com/blogs/research/2017/04/machine-learning-models-drug-discovery/ Video: https://www.youtube.com/watch?v=e3USliqAC9Q&feature=youtu.bePress: http://healthitanalytics.com/news/ibm-patents-machine-learning-model-for-pharmaceutical-discoveryhttps://finance.yahoo.com/news/ibm-patents-machine-learning-models-130000644.html

Articles of interest related to CHF prediction work recently published in Circulation: Cardiovascular Quality and Outcomes:IEEE Spectrum Article:http://spectrum.ieee.org/the-human-os/biomedical/diagnostics/ibm-intel-stanford-bet-on-ai-to-speed-up-disease-diagnosis-and-drug-discoveryBlog Post:https://www.ibm.com/blogs/research/2017/04/using-ai-to-predict-heart-failure/


Recent Presentations & Events

AMIA 2017 - 11/3-8/2017, Washington, D.C.
    Distinguished Paper Nomination: 

    Additional Presentations

Keynote: IEEE ICHI 2017 - 8/23-26/2017, Park City, Utah
Keynote: Computational Methods for Next Generation Health Care
Presenter: Jianying Hu

Keynote: 7th Digital Health Conference 2017 - 7/2-5/2017, London England
Keynote: Health Innovation – An IBM Perspective
Presenter: Ching-Hua Chen

American Medical Informatics Association (AMIA) 2016 Annual Symposium, 11/12-16, Chicago, IL
  • Characterizing Physicians Practice Phenotype from Unstructured Electronic Health Records
    Presenter: Sanjoy Dey
  • Data-Driven Prediction of Beneficial Drug Combinations in Spontaneous Reporting Systems
    Presenter: Ying Li
  • Predicting Negative Events: Using Post-discharge Data to Detect High-Risk Patients
    Authors: Lina Sulieman, Daniel Fabbri, Fei Wang, Jianying Hu, Bradley Malin
Data Analytics Challenge Win: IEEE International Conference on Healthcare Informatics (ICHI), 10/4-7/2016, Chicago, IL
Winner of Data Analytics Challenge - Team HARG, IBM T.J. Watson Research Center
Submitters: Janu Verma, Bum Chul Kwon, Yu Cheng, Soumya Ghosh, Kenney Ng
http://www.ieee-ichi.org/index.html
 
Best Paper Win: European Semantic Web Conference (ESWC), 5/29-6/2016, Anissaras, Crete, Greece
Best In-Use/Industrial PaperAward - Predicting Drug-Drug Interactions through Large-scale Similarity-Based Link Prediction
Authors: Achille Fokoue, Mohammad Sadoghi, Oktie Hassanzadeh, and Ping Zhang 
http://2016.eswc-conferences.org/awards-and-closing
 
Featured: IBM Watson Health Showcases on Tackling Diabetes at American Diabetes Association’s 76th Scientific Sessions, June 10-14, 2016, New Orleans, LA
Personalized predictive modeling work led by Kenny Ng featured in the press release:
http://www-03.ibm.com/press/us/en/pressrelease/49904.wss
 
2016 SIAM International Conference on Data Mining, May 5-7, 2016, Miami, FL
Tutorial Presentation: Biomedical Data Mining with Matrix Models
Presenter: Ping Zhang
http://www.siam.org/meetings/sdm16/tutorials.php
 
Keynote: 6th International Conference on Digital Health, April 11-13, 2016, Montreal, Quebec, Canada
Keynote Presentation - "Health Innovation - An IBM Perspective"
Presenter: Ching-Hua Chen
http://www.acm-digitalhealth.org
 
Special Session: ENDO 2016, April 1-4, 2016, Boston, MA
Symposium: Advanced Healthcare Informatics Analytics in the Areas of Precision Medicine, Translational Medicine and Population Health
Presenters: Kenney Ng, Yarra Goldschmidt, Ching-Hua Chen
https://endo.confex.com/endo/2016endo/webprogram/Session7819.html
 
Plenary Speach: 2016 Asian American Engineer of the Year Symposium, March 12, 2016, New Brunswick, NJ
Plenary speach on Data Driven Healthcare Analytics
Plenary Speaker: Jianying Hu
http://www.aaeoy.org/symposium.html
 
Invited Presentation: CHDI’s 11th Annual HD Therapeutics Conference, February 22–25, 2016, Palm Springs, CA
Invited closing presentation: Understanding Huntington’s disease progression: A multi–level probabilistic modeling approach
Presenter: Jianying Hu
http://chdifoundation.org/2016-conference